A A6802 Pages: 2

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SIXTH SEMESTER B.TECH DEGREE EXAMINATION, APRIL 2018

Course Code: EC302
Course Name: DIGITAL COMMUNICATION (EC)

Max. Marks: 100 Duration: 3 Hours

PART A

Answer any two full questions, each carries 15 marks.

Marks

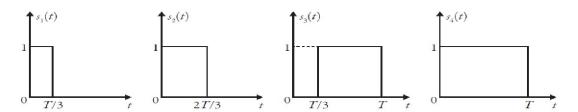
(5)

(3)

(7)

(8)

- 1 a) Define autocorrelation function of random process and explain its properties.
 - b) Find power spectral density of the WSS process if its autocorrelation function is given by (7)


$$R_X(\tau) = e^{-\alpha|\tau|} \text{ for } -\infty < \tau < \infty.$$

- c) Explain the need for anti-aliasing filter in a digital communication system.
- 2 a) What is a matched filter? Derive an expression for the impulse response of a matched (8) filter.
 - b) Derive impulse response for Duobinary encoder.
- 3 a) Consider a random process $X(t) = A\cos(2\pi f_c t + \emptyset)$ where A and fc are constants and \emptyset is uniformly distributed over the interval $(-\pi, \pi)$. Check whether the given random process is WSS.
 - b) A baseband digital system uses 4-level PAM along with the raised cosine pulse. The system has a frequency response of 3.2 kHz. If the binary data is transmitted at 9600 bps data rate, then what would be the symbol rate and roll-off factor of the transmitted pulse shape for zero ISI?

PART B

Answer any two full questions, each carries 15 marks.

4 a) Given the signals $s_1(t)$, $s_2(t)$, $s_3(t)$ and $s_4(t)$ shown in Figure. Use the Gram-Schmidt orthogonalization procedure to find an orthonormal basis for the set of following signals:

- b) Find mean and variance of received signal x(t), if signal $s_{i(t)}$ was transmitted which is corrupted by AWGN with zero mean such that $x(t) = s_{i(t)} + w(t)$, where w(t) is AWGN.
- 5 a) Derive an expression for probability of error for BPSK.

(8)

A

	b)	Draw the block diagram for QPSK generation and detection with relevant equations.	(7
6	a)	Explain how a continuous AWGN channel can be converted into a vector channel.	(8
	b)	With the help of a neat diagram explain the detection of non-coherent orthogonal	(7
		modulation schemes.	
		PART C Answer any two full questions, each carries 20 marks.	
7	a)	Define process gain and jamming margin as applied to a spread spectrum system.	(5
	b)	Derive probability of error in direct sequence spread spectrum with coherent binary	(8
		phase shift keying (DS/BPSK).	
	c)	In a DSSS modulation scheme, a 14-stage linear feedback shift register is used to	(7
		generate the PN code sequence. Find	
		(a) the period of code sequence	
		(b) Process gain.	
8	a)	Explain the principle of CDMA. Discuss the near field problem associated with CDMA.	(7
	b)	Discuss the need for diversity techniques for wireless communication. Give a brief	(8
		outline of various diversity techniques.	
	c)	Explain how a rake receiver counters the effects of multipath fading?	(5
9	a)	In DSSS-CDMA, the data rate $Rb = 6$ kbps and the chip rate $Rc = 12$ Mbps. What is the	(8
		JM if an output SNR of 10 dB is required for a $Pc = 10^{-5}$. Also, find the JM if we include	
		a system loss of 1.5 dB owing to imperfections in tracking and detection.	
	b)	Derive the bit error rate for a coherent BPSK over a flat-flat Rayleigh fading channel	(7
	c)	What are the advantages of FDMA over TDMA?	(5

A6802

Pages: 2